2. Übungsblatt zur Algebra II

Mikhail Gorskii, Anne Henke, SS 2019

- 1. Sei G eine Gruppe und sei N normal in G. Zeigen Sie die folgenden Aussagen:
 - (a) Ist $H \leq G$ mit $N \leq H$, so ist H/N Untergruppe von G/N.
 - (b) Jede Untergruppe von G/N hat die Form H/N für ein $H \leq G$ mit $N \subseteq H$.
 - (c) Die Abbildung $\phi: \{H \leq G \mid N \leq H\} \to \{U \mid U \leq G/N\}$, definiert durch $\phi(H) = H/N$, ist bijektiv und inklusionserhaltend.
 - (d) Es ist H normal in G, genau dann, wenn H/N normal in G/N ist.
- 2. Sei G eine endliche Gruppe.
 - (a) Zeigen Sie, konjugierte Elemente in G haben dieselbe Ordnung. Gilt die Umkehrung?
 - (b) Sei N Normalteiler in G, und sei $g \in N$. Sei \mathcal{C}_g^G die Konjugationsklasse von g in G. Zeigen Sie, \mathcal{C}_q^G ist eine disjunkte Vereinigung von Konjugationsklassen von N.
 - (c) Bestimmen Sie die Konjugationsklassen von Q_8 , A_4 und D_{2n} , mit $n \in \mathbb{N}$. (Optional: Bestimmen Sie die Konjugationsklassen von A_5 .)
 - (d) Nach der Vorlesung 2.17 ist eine Untergruppe N von G normal, genau dann, wenn N eine disjunkte Vereinigung von Konjugationsklassen ist. Benutzen Sie dies, um alle Normalteiler von Q_8 , A_4 , A_5 , A_8 und A_{10} , jeweils unter Angabe des Isomorphietyps der Gruppe, zu bestimmen.
- 3. Sei G eine Gruppe und für eine Menge X sei S_X die symmetrische Gruppe auf X, also die Menge aller Bijektionen von X nach X, mit Komposition von Abbildungen. In dieser Aufgabe entwickeln wir eine äquivalente Definition von Gruppenwirkung.
 - (a) Sei X eine G-Menge. Zeigen Sie, dass für alle $g \in G$ die Abbildung $\phi_g : X \to X$, definiert durch $\phi_g(x) = gx$, ein Element von S_X ist. Folgern Sie, dass die Abbildung $\phi : G \to S_X$ mit $g \mapsto \phi_g$ ein Gruppenhomomorphismus ist. Die Abbildung ϕ heißt Permutationsdarstellung von G. Zeigen Sie auch, dass gilt:

$$\operatorname{Ker}(\phi) = \bigcap_{x \in X} \operatorname{Stab}_G(x).$$

- (b) Umgekehrt, sei X eine nicht-leere endliche Menge und sei $\psi: G \to S_X$ ein Gruppenhomomorphismus. Zeigen Sie, dass X eine G-Menge ist.
- 4. (Schriftlich, 7 Punkte.)
 - (a) Sei G eine endliche Gruppe und $n \in \mathbb{N}$. Sei $X := \text{Abb}(G, \{1, ..., n\})$. Wir definieren die Abbildung $G \times X \to X$ durch $(g \cdot f)(h) := f(hg)$, mit $g, h \in G$ und $f \in X$. Zeigen Sie, dass dies eine Gruppenwirkung definiert. Bestimmen Sie alle Fixpunkte der Operation. Wieviele Fixpunkte gibt es?
 - (b) Sei T die Menge aller Transpositionen in S_4 . Die Gruppe S_4 operiert auf T vermöge

$$\varphi: S_4 \to S_T$$
, mit $\varphi(q)(t) = qtq^{-1}$, siehe Aufgabe 3.

Bestimmen Sie Bahn und Stabilisator der Transposition (1,2). Überprüfen Sie Ihr Ergebnis mit Hilfe des Bahnensatzes.

- 5. Sei G eine nicht-abelsche Gruppe der Ordnung acht. Wir bestimmen die möglichen Isomorphietypen von G.
 - (a) Zeigen Sie, es existiert eine Element $a \in G$ von Ordnung vier.
 - (b) Sei $H = \langle a \rangle$ und sei $b \in G \backslash H$. Zeigen Sie, dann ist $G = \{1, a, a^2, a^3, b, ba, ba^2, ba^3\}$. Zeigen Sie auch, dass $ab = ba^3$ ist.
 - (c) Zeigen Sie: ist b Element der Ordnung zwei, so ist $G \simeq D_8$; ist b Element der Ordnung vier, so ist $G \simeq Q_8$.